Steun ons werk
Decorative header background

Hypothalamic thyroid hormone feedback in health and disease.

Onderzoeksgroep Swaab
Publicatiejaar 2006
Gepubliceerd in Progress in Brain Research
Auteur(s) E. Fliers, A. Alkemade, W.M. Wiersinga, D.F. Swaab

The role of the human hypothalamus in the neuroendocrine response to illness has only recently begun to be explored. Extensive changes in the hypothalamus-pituitary-thyroid (HPT) axis occur within the framework of critical illness. The best-documented change in the HPT axis is a decrease in serum concentrations of the biologically active thyroid hormone triiodothyronine (T3). From studies in post-mortem human hypothalamus it appeared that low serum T3 and thyrotropin (TSH) during illness (nonthyroidal illness, NTI) are paralleled by decreased thyrotropin-releasing hormone (TRH)mRNA expression in the hypothalamic paraventricular nucleus (PVN), pointing to a major alteration in HPT axis setpoint regulation. A strong decrease in TRHmRNA expression is also present in the PVN of patients with major depression as well as in glucocorticoid-treated patients. By inference, hypercortisolism in hospitalized patients with severe depression or in critical illness may induce down-regulation of the HPT axis at the level of the hypothalamus. In order to start defining the determinants and mechanisms of these setpoint changes in various clinical conditions, it is important to note that an increasing number of hypothalamic proteins appears to be involved in central thyroid hormone metabolism. In recent studies, we have investigated the distribution and expression of thyroid hormone receptor (TR) isoforms, type 2 and type 3 deiodinase (D2 and D3), and the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the human hypothalamus by a combination of immunocytochemistry, mRNA in situ hybridization and enzyme activity assays. Both D2 and D3 enzyme activities are detectable in the mediobasal hypothalamus. D2 immunoreactivity is prominent in glial cells of the infundibular nucleus/median eminence region and in tanycytes lining the third ventricle. Combined D2, D3, MCT8 or TR immunocytochemistry and TRHmRNA in situ hybridization indicates that D3, MCT8 and TRs are all expressed by TRH neurons in the PVN, whereas D2 is not. Taken together, these results suggest that the prohormone thyroxine (T4) is taken up in glial cells that convert T4 into the biologically active T3 via the enzyme D2; T3 is subsequently transported to TRH producing neurons in the PVN where it may bind to TRs and/or may be degraded into inactive iodothyronines by D3. This model for thyroid hormone action in the human hypothalamus awaits confirmation in future experimental studies.

Steun ons werk

De Stichting Vrienden van het Herseninstituut ondersteunt baanbrekend hersenonderzoek. U kunt ons daarbij helpen.

Steun ons werk