Steun ons werk
Decorative header background

Transcriptional profiling of CD11c-positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer’s disease

Publicatiejaar 2016
Gepubliceerd in Biochimica et Biophysica Acta- Molecular Basis of Disease
Auteur(s) W. Kamphuis , E.M. Hol ,
De volgorde van auteurs kan afwijken van de originele publicatie door een tijdelijk technisch probleem.

Amyloid plaques in Alzheimer’s disease (AD) mice are surrounded by activated microglia. The functional role of microglia activation in AD is not well understood; both detrimental and beneficial effects on AD progression have been reported. Here we show that the population of activated microglia in the cortex of the APPswe/PS1dE9 mouse AD model is divided into a CD11c-positive and a CD11c-negative subpopulation. Cd11c transcript levels and number of CD11c-positive microglia increase sharply when plaques start to occur and both parameters continue to rise in parallel with the age-related increasing plaque load. CD11c cells are localized near plaques at all stages of the disease development and constitute 23% of all activated microglia. No differences between these two populations were found in terms of proliferation, immunostaining intensity of Iba1, MHC class II, CD45, or immunoproteasome subunit LMP7/β5i. Comparison of the transcriptome of isolated CD11c-positive and CD11c-negative microglia from the cortex of aged APPswe/PS1dE9 with WT microglia showed that gene expression changes had a similar general pattern. However, a differential expression was found for genes involved in immune signaling (Il6, S100a8/Mrp8, S100a9/Mrp14, Spp1, Igf1), lysosome activation, and carbohydrate- and cholesterol/lipid-metabolism (Apoe). In addition, the increased expression of Gpnmb/DC-HIL, Tm7sf4/DC-STAMP, and Gp49a/Lilrb4, suggests a suppressive/tolerizing influence of CD11c cells. We show that amyloid plaques in the APP/PS1 model are associated with two distinct populations of activated microglia: CD11c-positive and CD11c-negative cells. Our findings imply that CD11c-positive microglia can potentially counteract amyloid deposition via increased Aβ-uptake and degradation, and by containing the inflammatory response.

Steun ons werk

De Stichting Vrienden van het Herseninstituut ondersteunt baanbrekend hersenonderzoek. U kunt ons daarbij helpen.

Steun ons werk