Steun ons werk
Decorative header background

Ultrastructural axon-myelin unit alterations in MS correlate with inflammation

Onderzoeksgroep Huitinga
Publicatiejaar 2023
Gepubliceerd in Annals of Neurology
Auteur(s) Aletta M R van den Bosch, Sophie Hümmert, Anna Steyer, Torben Ruhwedel, J. Hamann, Joost Smolders, Klaus-Armin Nave, Christine Stadelmann, M.H.P. Kole, Wiebke Möbius, I. Huitinga

OBJECTIVE: Changes in the normal-appearing white matter (NAWM) in multiple sclerosis (MS) may contribute to disease progression. Here, we systematically quantified ultrastructural and subcellular characteristics of the axon-myelin unit in MS NAWM and determined how this correlates with low grade inflammation.

METHODS: Human brain tissue obtained with short post-mortem delay and fixation at autopsy enables systematic quantification of ultrastructural characteristics. In this study, we performed high-resolution immunohistochemistry and quantitative transmission electron microscopy to study inflammation and ultrastructural characteristics of the axon-myelin unit in MS NAWM (n=8) and control white matter (WM) in the optic nerve.

RESULTS: In the MS NAWM, there were more activated and phagocytic microglia cells (HLA+ P2RY12- and Iba1+ CD68+ ) and more T cells (CD3+ ) compared to control WM, mainly located in the perivascular space. In MS NAWM compared to control WM there were, as expected, longer paranodes and juxtaparanodes and larger overlap between paranodes and juxtaparanodes. There was less compact myelin wrapping, a lower g-ratio, and a higher frequency of axonal mitochondria. Changes in myelin and axonal mitochondrial frequency correlated positively with the number of active and phagocytic microglia and lymphocytes in the optic nerve.

INTERPRETATION: These data suggest that in MS NAWM myelin detachment and uncompact myelin wrapping occurs, potassium channels are unmasked at the nodes of Ranvier, and axonal energy demand is increased, or mitochondrial transport is stagnated, accompanied by increased presence of activated and phagocytic microglia and T cells. These sub-clinical alterations to the axon-myelin unit in MS NAWM may be contributing to disease progression. This article is protected by copyright. All rights reserved.

Steun ons werk

De Stichting Vrienden van het Herseninstituut ondersteunt baanbrekend hersenonderzoek. U kunt ons daarbij helpen.

Steun ons werk